Spatial and temporal specificity of Ca2+ signalling in Chlamydomonas reinhardtii in response to osmotic stress

نویسندگان

  • Peter Bickerton
  • Simone Sello
  • Colin Brownlee
  • Jon K. Pittman
  • Glen L. Wheeler
چکیده

Ca2+ -dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+ -responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii

Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...

متن کامل

Two distinct, calcium-mediated, signal transduction pathways can trigger deflagellation in Chlamydomonas reinhardtii

The molecular machinery of deflagellation can be activated in detergent permeabilized Chlamydomonas reinhardtii by the addition of Ca2+ (Sanders, M. A., and J. L. Salisbury, 1989. J. Cell Biol. 108:1751-1760). This suggests that stimuli which induce deflagellation in living cells cause an increase in the intracellular concentration of Ca2+, but this has never been demonstrated. In this paper we...

متن کامل

Effect of Osmotic Stress on Carbon Metabolism in Chlamydomonas reinhardtii: Accumulation of Glycerol as an Osmoregulatory Solute.

NaCl, KCl, and sucrose at equiosmolar concentrations had similar inhibitory effects on photosynthetic carbon metabolism by the freshwater green alga, Chlamydomonas reinhardtii. Inhibitory concentrations of these solutes altered the products of photosynthetic (14)CO(2) incorporation, resulting in reduced incorporation into starch, sugar phosphates, lactate, and glycolate, but caused an accumulat...

متن کامل

Biosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes

Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...

متن کامل

The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii.

The availability of the complete DNA sequence of the Chlamydomonas reinhardtii genome and advanced computational biology tools has allowed elucidation and study of the small ubiquitin-like modifier (SUMO) system in this unicellular photosynthetic alga and model eukaryotic cell system. SUMO is a member of a ubiquitin-like protein superfamily that is covalently attached to target proteins as a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2016